a2 United States Patent

Asai et al.

US009235578B2

(10) Patent No.: US 9,235,578 B2
(45) Date of Patent: Jan. 12, 2016

(54) DATA PARTITIONING APPARATUS AND
DATA PARTITIONING METHOD

(75) Inventors: Tatsuya Asai, Kawasaki (JP); Hiroaki
Morikawa, Kawasaki (JP); Shinichiro
Tago, Shinagawa (JP); Hiroya Inakoshi,
Tama (JP); Nobuhiro Yugami, Minato
(IP); Seishi Okamoto, Hachioji (IP)

(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 86 days.

(21) Appl. No.: 13/473,345
(22) Filed: May 16, 2012

(65) Prior Publication Data
US 2013/0031048 A1l Jan. 31, 2013

(30) Foreign Application Priority Data
Jul. 29,2011 (IP) o 2011-167784
(51) Imt.ClL
GO6F 17/00 (2006.01)
GO6F 17/30 (2006.01)
(52) US.CL

CPC GO6F 17/30067 (2013.01); GOGF 17/30286
(2013.01); GOGF 17/30516 (2013.01)
(58) Field of Classification Search
CPC ..ot GOG6F 17/30286; GOGF 17/30289;
GOG6F 17/3056; GOGF 17/30864; GOGF
17/3006; GOGF 17/30489; GO6F 17/30539;
GOG6F 17/5068; GO6F 17/30; GOGF 17/3033,
GOG6F 17/30365; GOGF 17/30412; GO6F
17/30554; GO6F 17/30592; GOGF 17/30067,
GO6F 17/30587; GOGF 17/505
USPC ittt 707/609, 803
See application file for complete search history.

NO.

STORE STREAM DATA
(3[1]) IN TOP BUCKET

(56) References Cited
U.S. PATENT DOCUMENTS

5,675,791 A * 10/1997 Bhideetal. 395/621
7,809,892 B1 10/2010 Chatterjee et al.
(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2-67648 A 3/1990
Jp 2006-228060 A 8/2006
(Continued)
OTHER PUBLICATIONS

Japanese Office Action mailed Nov. 18, 2014 for corresponding
Japanese Patent Application No. 2011-167784, with Partial English
Translation, 4 pages.

(Continued)

Primary Examiner — Pierre Vital
Assistant Examiner — Andalib Lodhi
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

A data partitioning apparatus receives stream data and stores
with previous-and-subsequent information that specifies data
previous and subsequent to the data. Then, for groups, each of
which contains the data that are stored and that are partitioned
into the number of the groups, the data partitioning apparatus
stores top information specifying data located at the top in a
corresponding group and end information specifying data
located at the end in the corresponding group. Then, when
new data is stored, the data partitioning apparatus specifies
data previous and subsequent to the new data and stores the
new data by associating it with the previous-and-subsequent
information that specifies the data previous and subsequent to
the new data. Then, when data is inserted, the data partition-
ing apparatus updates information for each group such that
the difference between the number of data belonging to each
group is equal to or less than one.

5 Claims, 28 Drawing Sheets

US 9,235,578 B2

Page 2
(56) References Cited 2011/0126155 Al1* 5/2011 Krishnaraj etal. 715/811
2011/0145828 Al* 6/2011 Takahashietal. 718/102
U.S. PATENT DOCUMENTS 2012/0084278 Al* 4/2012 Frankeetal. 707/719
7,991,244 B2* 8/2011 Youngersetal. ... 382/289 FORFIGN PATENT DOCUMENTS
8,122,064 B2 2/2012 Asai et al.
8,364,677 B2* 1/2013 Brodfuehreretal. 707/737 Jp 2007-011784 1/2007
8,392,482 B1* 3/2013 McAlister et al. 707/899 Jp 2011-100359 A 5/2011
2004/0088513 Al* 5/2004 Biessener et al. .. . T11/173 P 2011-128818 A 6/2011
2005/0228957 Al* 10/2005 Satoyamaet al. . . 7117162
2005/0273565 Al* 12/2005 Hirakawa et al. . 7117162 OTHER PUBLICATIONS
2007/0067583 Al* 3/2007 Zoharetal. .. . 7117162
%88;;8}(5)2247‘; ﬁi: 2;388; EO{)HI_H& lf't al'al . ;H; }gi Atsushi, Izawa, Interesting Lecture on Database, 8, bit, Japan,
abzinski et al. .
2009/0083596 AL* 32009 Gizdarski .. 14729 K?lorltsu .Shuppar.l Co.,Ltd.,]?ec. 1,1991, vol. 23, No. 13, pp. 50-61,
2009/0299913 Al* 12/2009 Mallozzi .. . 705/36 R With Partial English Translation.
2009/0307436 Al* 12/2009 Larsonetal. 711/148
2010/0030800 Al* 2/2010 Brodfuehreretal. 707/102 * cited by examiner

U.S. Patent Jan. 12, 2016 Sheet 1 of 28 US 9,235,578 B2

1 10 5
b § §
SE%QM PAR%#@N&NG USER
GEN Eﬁﬁﬂm AR TERMINAL

U.S. Patent Jan. 12, 2016 Sheet 2 of 28 US 9,235,578 B2

FIG.2

DATA PARTITIONING APPARATUS
713

CONTROL UNIT
¢ 14

NUMBER-QF-PARTITIONS
SETTING UNIT

?15

PARTITION PROCESSING
UNIT 45

12
¢
RECEIVING UNIT STORING UNIT

I gg? 123

POSITION SPECIFYING
UNIT

STORING CONTROL.
UNIT

11 | ¢ 19

COMMUNICATION BUCKET DETERMINING

CONTROL UNIT

WFUNIT =
g-EU

UPDATING UNIT
'}‘ 203

RECEIVED
DATA DB

12b

PARTITION
BOUNDARY
DB

EXPANSION
EXECUTION UNIT

| ¢ 200
SHRINKING
EXECUTION UNIT

| ¢ 20c

SLIDE EXECUTION
UNIT

S-Z'?

QUTPUT UNIT

U.S. Patent Jan. 12, 2016 Sheet 3 of 28 US 9,235,578 B2

FIG.3
TIME | NAVE | AGE | (NIT: 16,000 YEN) [(ONIT: YEN)

9 Iris 61 1200 7000

4 Dick 53 1000 5500

5 Erik 35 800 10000

8 Henry 47 750 8500

7 George 25 600 1300

2 Bob 55 450 2500

1 Alice 24 300 1500

& Frank 19 250 300

3 Caren 62 200 3000
FIG.4

9. Iris - 4. Dick [5. Erik Y 8. Henry

NULL] @] [Te | @7 Te | & [Te | nuL

U.S. Patent Jan. 12, 2016 Sheet 4 of 28 US 9,235,578 B2

FIG.5
ANNUAL
o | e | ace | BEHE | saneny
10,000 YEN)
9 Iris 61 1200 7000
BUC'?DET) 4 Dick | 53 1000 5500
5 Eik | 35 800 10000 |
8 | Herry | 47 750 8500 | I
BUC‘?S; 7 |George| 25 500 1300 fggﬁﬁgﬁ”\{
2 Bob | 55 450 2500 |
1 Aice | 24 300 1500 |
IS8 | Frank | 19 250 300
3 | Caen | 62 200 3000
FIG.6
BUCKET |NUMBER OF DATA TOP END
NAME (SIZE) INFORMATION | INFORMATION
D, 3 9 5
D, 3 8 2
D, 3 1 3

U.S. Patent Jan. 12, 2016 Sheet 5 of 28 US 9,235,578 B2

FIG.7

RECEIVED DB RECEIVED DB

RECORD

FIG.8

RECEIVED DB RECEIVED DB

RECORD -~

U.S. Patent Jan. 12, 2016 Sheet 6 of 28 US 9,235,578 B2

FIG.9

RECEIVED DB RECEIVED DB

RECORD

FIG.10

RECEIVED DB RECEIVED DB

RECORD -

U.S. Patent Jan. 12, 2016 Sheet 7 of 28 US 9,235,578 B2

RECEIVED DB RECEIVED DB
RECORD
D,
DP
D,.,
D,.,
D, .
D,
'4 ™ f D
DQ
A

U.S. Patent Jan. 12, 2016 Sheet 8 of 28 US 9,235,578 B2

RECEIVED DB RECEIVED DB
RECORD ~
{Z}p
m DD
apﬂ
AN
Dy
g D,..
°, N
1}

U.S. Patent Jan. 12, 2016 Sheet 9 of 28 US 9,235,578 B2

FIG.13

{ START '

STORE STREAM DATA
(S{1]) IN TOP BUCKET

1S S

READ STREAM DATA Si] -5104

INSERT STREAM DATA 5]
{INSERTION POINT=j)

PARTITION BOUNDARY

UPDATING PROCESS 5106

5107

1S OUTPUT
REQUEST RECEIVED?

YES

OUTPUT DATA I‘»S?DE

.
»

¥

INCREMENT i BY ONE I‘\«S?DQ

END

US 9,235,578 B2

Sheet 10 of 28

Jan. 12, 2016

U.S. Patent

~ _ & MOI4 dnNs _ M

and

MO aNs

L N
AT

{1 mmwuam&
NG AS (O L3MONE NI
YAV 40 HAGNNAN INIWIHON

90zS-

LOZS2

A

Tiasts)

NGLLHIEN

i

. LEMONE ANY
£'q) L2M0oNG NI3AmL3g
Q31IHISNE P} YIVO

Si

o

E0Es-

ON

71Ol

LLIAONE TIVINE

QLN Q3LHASNI (P} VLV

~

S3A

{Z 853004}
{d} MNHHSNMOG GNY
{b) GNVYAXINAMOT
{1-d ‘L+b} 3ANSNMOC ‘bed 4
10} MNIHHSCN aNY 10} ONVEX3dN
{i-b “L+d) 3ANSdn bed 4
("ay 1390n4 ev Q) 13MoN8 OL
LSAS0ID LIMONE TIVINS INIHET
ano Ag (o) imiong
NI YLYC S0 HIBNNN INFWIHON!

pOzG> A

(') imiong g1

o Lavonsg
NOLLHESN S

ON

U.S. Patent Jan. 12,2016 Sheet 11 of 28

FIG.15

BUCKET?

YES

Y

IS BUCKET (B} SMALL

ARE BUCKET
(D,) AND BUCKET (D,)
LARGE BUCKETS?

US 9,235,578 B2

gSBDS

A 4

v §8304

DEFINE SMALL BUCKET
CLOSEST TO BUCKET (D) OR
BUCKET (D,.,) AS BUCKET (D).
IF pri<qg, UPSLIBE {(p+1, o-1)
AND UPEXPAND {q).
IF prq, DOWNSLIDE {p, g+ 1)
AND DOWNEXPAND {g).

{PROCESS 4}

98302

{(PROCESS 3)

MODIFY END INFORMATION
OF BUCKET (D) TO INSERTION
DATA {d).
INCREMENT NUMBER OF

BUCKET (D) BY ONE.

MODIFY TOP INFORMATION OF
VES | BUCKET (D,,,) TO INSERTION

DATA (d).

INCREMENT NUMBER OF
BUCKET (D) BY ONE.

(FROCESS b)

A

END

US 9,235,578 B2

Sheet 12 of 28

Jan. 12, 2016

U.S. Patent

(g mmmoom%
N0 AS) LEMoNg NI
VAV 40 SIENAN LININIHONI
(P} Y1V NOLLHASNI

0L €0 LIN0NY aNG
A0 NOLLYWHO AN ONT ASIO0W

{£ wmmmom&
ANO A8 (O 139008 N
ViV S0 H3GNON INIWIHONI
(P} wiva
NotbdIsn oL 1a gl Lasong
40 NOLLYWHO AN dOL AZIGOW

) g
{5 393D0H} 90ovs

(b)Y ONVIXINAMOT ONY
(- Lab) 3ArISNMOa
i} HINIHHSNAMOG
(g amiong
sy) Exunm L 1S3s01D
AFAONG TIVINS 3NIF30
aNo A8 Ca) 1Iionsg N
VIV 20 SIENNN INTAINON
Py viva
NOLLHISNI 0L (M) L3¥0Ng 40
NOLLYWHOHNI ONI AJIGOW

U]

SHA

LOPSY ﬁmxunm
Iouy1(Q) L13WoNng

ONZ 81
S0¥s? -~

POpSS A

{9 mmmu@m&
(b} ONVIXTdN ANY
.m LB 7Y 3a1sdn 15) MNHSIN
ay imvong sy Q) L3xong o1
LB3ISCIC L3MONE TIVING 3INIE3a
N0 A8 (a Lavong
NI VIVQ 40 YIENON LNIWIEDNI
P} vV
NOLLH3SN 01 10 (Fa) 13%0n8
40 NOILYWHOAN dJOL AJIGOW

£Opg2 4
ON
gIENe
Fouvi{ia) L;ong
334

401 5l
AL 4 .

NIV
T 40 dOL LNIOG

O

NOLLYZSNI S
LOPS-

LHYLS

91914

U.S. Patent Jan. 12, 2016 Sheet 13 of 28 US 9,235,578 B2

ANNUAL INCOME | PAYMENT
TIME NAME AGE | {UNIT: 10,000 YEN) [(UNIT: YEN)
1 Alice 24 300 1500
2 Bob 55 450 2500
3 Caren 62 200 3000
4 Dick 53 1000 5500
5 Erik 35 800 10000
6 Frank 19 250 300
7 George 25 600 1300
8 Henry 47 750 8500
9 Iris 61 1200 7600
TOP
INFORMATION
NUMBER
OF DATA
END
INFORMATION

U.S. Patent

Jan. 12, 2016

RECEIVED DB

FIG.19

Sheet 14 of 28

US 9,235,578 B2

1

Alice

24

300

PARTITION
BOUNDARY DB

BUCKET (D))

1500 1€

1

\ 1 1

BUCKET (D)

NULL| @

NULL] @

BUCKET (D,)

NULL] @

NULL] @

U.S. Patent Jan. 12, 2016 Sheet 15 of 28 US 9,235,578 B2
RECEIVED DR PARTITION BOUNDARY DB
2 | Bob| 55 | 450 | 2500 BUCKET (D)
1 latice| 24 | 300 | 1500 1 2
\\ 1 :> 2
1 1
BUCKET (D,)
NULL| @
D
NULL| @
BUCKET (D,)
NULL| @
0
NULL] @
RECEIVED DB PARTITION BOUNDARY DB
2 | Bob| 55 | 450 2500& BUCKET (D,)
1 lAlice] 24 | 300 | 1500 b 2 2

NULL
NULL

Lo
ke 1§
A
eS|
_1
=
v

BUCKET (D)
®
0
®

U.S. Patent

Jan. 12, 2016 Sheet 16 of 28

US 9,235,578 B2

RECEIVED DB PARTITION BOUNDARY DB
2 | Bob| 55 | 450 2500|\ BUCKET (D)
1 | Aice] 24 | 300 | 1500 s 2
1
3 iCaren] 62 200 § 3000 2
BUCKET (D)
1
1
1
BUCKET (D,)
NULL | @
0
NULL | @
RECEIVED DB PARTITION BOUNDARY DB
2 | Bob| 55 | 450 | 2500 ~ BUCKET (Dy)
1 {Alice] 24 | 300 | 1500 2
5 lcaren] 62 | 200 {3000 5 1

BUCKET {D.}

—

3

3

U.S. Patent Jan. 12, 2016 Sheet 17 of 28 US 9,235,578 B2
RECEIVED DB PARTITION BOUNDARY DB
4 | Dick | 53 {1000 | 5500 BUCKET (D)
2 | Bob | 55 | 450 | 2500 je 2
1
t [Aice| 24 | 300 | 1500k | T~
3 |Caren| 62 | 200 | 3000 \
\BUCKET (D,)
1
1
| {1
BUCKET (D)
3
1
3
RECEIVED DB PARTITION BOUNDARY DB
4 | Dick | 53 | 1000] 5500 BUCKET (D))
2 | Bob | 55 | 450 | 2500 4
2
1 |Alice | 24 | 300 | 1500 o
3 |Caren| 62 | 200 | 3000

BUCKET (D,)

i

=7 |
= 7 /]

1

BUCKET (D,)

3

3

U.S. Patent Jan. 12, 2016 Sheet 18 of 28 US 9,235,578 B2

FIG.23
RECEIVED DB PARTITION BOUNDARY DB
4 | Dick | 53 |1000 | 5500 e BUCKET (D.)
5 | enk | 35 | 800 [1o000| | T 4 N
2 | Bob | 55 | 450 | 2500 |« P — 3

1 |Alce| 24 | 300 | 1500
3 |caren| 82 | 200 | 3000 \ UCKET (D,}

NGt

1
BUCKET (D}
3

3

L

RECEIVED DB PARTITION BOUNDARY DB
BUCKET (D))

4 Dick | 53 § 1000 § 5500
5 Erik | 35 | 800 {10000
2 Bob | 55 | 450 | 2500
1 Alice | 24 300 | 1500
3 |Caren} 82 | 200 } 3000

4 4

2 | < 3

5)

BUCKET (D,)

2

7T
il

1

BUCKET (D,)

3

3

U.S. Patent Jan. 12, 2016 Sheet 19 of 28 US 9,235,578 B2
RECEIVED DB PARTITION BOUNDARY DB
4| Dick | 53 | 1000 | 5500 fe] \\BUCKET ©,)
51 Erk | 35 | 800 |10000 4
"\\\ 2
21 Bob | 55 | 450 | 2500 5
11 Aice | 24 | 300 | 1500 \
6 | Frank | 19 | 250 | 300 \gUGKET (D,)
3 ¢ Caren 62 200 1 3000 2
2
1
\BUCKET (D,
3
1
3
RECEIVED DB PARTITION BOUNDARY DB
4 | Dick | 53 {1000 | 5500] \BUCKET D,
51 Erk | 35 | 800 |10000 4
2| Bob | 55 | 450 | 2500 | 5
11 Aice | 24 | 300 | 1500 \
6 | Frank | 19 | 250 | 300 \BUCKET (D)
3| Caren 62 200 1 3000 5
2
1
BUCKET (D)
6
2
3

U.S. Patent Jan. 12, 2016 Sheet 20 of 28 US 9,235,578 B2
RECEIVED DB PARTITION BOUNDARY DB
4| Dick | 53 | 1000|5500 he] BUCKET (Dy)

51 Erk | 35 | 800 10000 \\ 4
, 2
7 | George | 25 | 600 | 1300 T~
2| Bob | 55 | 450 | 2500 \
1] Alice | 24 1 300 | 1500 \ BUCKET (D)
6| Frank | 19 | 250 | 300 \ 5
3| Caren | 82 | 200 | 3000 &\ — 2
BUCKET (D)
6
2
3
RECEIVED DB FPARTITION BOUNDARY DB
4| Dick | 53 | 1000|5500 | BUCKET (D)
51 Erk | 35 | 800 |10000 T~ 4
3
7 1 George | 256 | 600 | 1300 |« 7
2| Bob | 55 | 450 | 2500 N
1] Alice | 24 1 300 | 1500 \ BUCKET (D,)
6| Frank | 19 | 250 | 300 A
3| caren | 62 | 200 | 3000 %\ , 2
BUCKET (D)
&
2

3

U.S. Patent Jan. 12, 2016 Sheet 21 of 28 US 9,235,578 B2
RECEIVED DB PARTITION BOUNDARY DB
4| Dick | 53 |1000 | 5500 per_ BUCKET (D,)

51 ek | 35 | 800 |10000 T~ 4 4
3| 4
8 | Henry 47 | 750 | 8500 P 7 7
7 | George | 25 | 600 | 1300]
2| Bob | 65 | 450 | 2500 b | BUCKET (D,)
11 Aice | 24 | 300 | 1500 \\ 5
6| Frank | 19 | 250 | 300 2
\ \\]
3| Caren | 62 | 200 | 3000 \
\S’UCKET (D,)
B
2
3
REGEIVED DB PARTITION BOUNDARY DB
4| bick | 53 | 1000 | 5500 he] BUCKET (D,)
51 Erk | 35 | 800 |10000] 4 4
3| 4
g1 Henry | 47 | 750 | 8500 i« 8 ' ;
7 1 George | 25 600 | 1300 \
21 Bob | 55 | 450 | 2500 BUCKET (D,)
1] Ace | 24 | 300 | 1500 jw .
8 | Frank | 19 | 250 | 300 3
, \]
3 | Caren | 62 | 200 | 3000 }.\
BUCKET (D,)
5
2

3

U.S. Patent

Jan. 12, 2016

Sheet 22 of 28

US 9,235,578 B2

PARTITION BOUNDARY DB

—

FIG.27

RECEIVED DB
9| is 61 | 1200 | 7000 BUCKET (D)
4| Dick | 53 | 1000 | 5500 4
51 Esk | 35 | 800 |10000 s
8 | Henry | 47 | 750 | 8500]
7 | George | 25 | 600 | 1300 . BUCKET (D,)
21 Bob | 55 | 450 | 2500 T~
1] Ace | 24 | 300 | 1500 je—ti ™
8| Frank | 19 | 250 | 300
3 | Caren 82 200 | 3000 Q\BU CKET (D,)

\ 6

3

RECEIVED DB
9| s | 61 | 1200|7000 p] BUCKET (0,)
4| Dick | 53 | 1000 | 5500]
5| Efk | 35 | 800 |10000} — 5
8 | Henry | 47 | 750 | 8500 o
7 | George | 25 | 600 | 1300 BUCKET (D)
21 Bob | 55 | 450 | 2500 \\ 2
11 aice | 24 | 300 | 1500 .\\\ -
6 | Frank | 19 | 250 | 300
3| caren | 62 | 200 | 3000 ,.\ BUGKET (0,

1

/

3

PARTITION BOUNDARY DB

=

US 9,235,578 B2

Sheet 23 of 28

Jan. 12, 2016

U.S. Patent

€

}

(*a) meuzm/
.
AN

z

8

{“q) 130N

G

8

/|

[v/ 170

Q) 1ayong

80 AGVINNOY
NOLLLLHYd

000¢ 002 zo | usseD g
00¢ 052 81 sjuelg 9
0054 00¢ 7z a0fy b
0052 0G¥ 1o fqog Z
o0ey 009 gz jebwegi 4
0068 084 Ly | Awsi g
0000} 008 ge PIEE G
0055 0001 €S 0IC] b
0004 74! L9 S| 6

AmmwmwwMVAzm>mmwwww§:v 39V | IAYN | 3w

TYNNNY
8¢ Ol

fa)
EN

e}
13iong

{"q)
13oNg

U.S. Patent

Jan. 12, 2016

Sheet 24 of 28 US 9,235,578 B2
FIG.29
PARTITION
BOUNDARY DB
BUCKET (0,)

RECEIVED DB

¢ fris 61 1200 7000
4 Dick 53 1000 5500
5 Erik 35 800 10000
8 Hemry 47 750 8500
7 George 25 600 1300
2 Bob 55 450 2500
10 James 37 400 1760
1 Alice 24 300 1500
& Frank 19 260 300
3 Caren 62 200 3000

YAV NREINN

9

4

N\

BUCKET (D,)

5

L

8

BUCKET (D,)

7

2

BUCKET {D,)

10

1

BUCKET (D)

/)

3]

3

U.S. Patent Jan. 12, 2016 Sheet 25 of 28 US 9,235,578 B2

PARTITION
BOUNDARY DB
BUCKET (D.)
g
/ ?
4
RECEIVED DB /
g Iris 61 1200 7000 / BUCKET (D,)
4 Dick 53 1000 5500 s
topp 5 Erik 35 800 10000 W - 2
»-'—'""""
endl 8 | Henry | 47 750 8500
7 George} 25 600 1300 v\ BUCKET (D.)
2 | Bob | 55 450 2500 \\ .
B
10 |James| 37 400 1700 \ 2
ouT 1 Alice 1 24 300 1500 \ 2
& Frank 19 250 300
3 |caen| 62 | 200 3000 ,\BUCKET (Ba)
10
2
1
5 Erik 35 800 10000
8 Henry 47 750 8500 BUCKET (D)
‘ 8
2
3

U.S. Patent Jan. 12, 2016 Sheet 26 of 28 US 9,235,578 B2

PARTITION
BOUNDARY DB
BUCKET (D,)
)
2
4
RECEIVED DB /
o bris 61 1200 7000 h/ BUGKET (D,)
4 Dick | 53 1000 5500 5
]
5 Erik 35 800 10000 17 : 2
,.,——-"‘"
8 |Henryl 47 750 8500]
topy 7 |{George] 25 600 1300 ‘
- BUCKET (D)
toal 2 | Bob | 55 | 480 2500 I,\\ -
10 James 37 400 1700 \ 3
1 Alice | 24 300 1500 2
6 | Frank| 19 250 300
T
ou 3 |caren| 62 200 3000 BUCKET (D)
10
‘ 2
1
‘ 7 George 25 600 1300
2 Bob 55 450 2500 \ BUGKET (D,
6
‘ 2
3

U.S. Patent Jan. 12, 2016 Sheet 27 of 28 US 9,235,578 B2

PARTITION
BOUNDARY DB
BUCKET (D,)
9
/ ‘
4
RECEIVED DB /
9 s | 61 1200 7000 / BUCKET (D,)
4 Dick | 53 1000 5500 f s
5 Erik 55 800 10000] ; 2
e
8 Henry | 47 750 8500 &
7 Georgej 25 600 1300 \ BUGKET (D,)
3
2 Bob 55 450 2500 \\
7
opl 10 |James| 37 400 1700 AN P
1 Ali 24 3 2
end lce Q0 1500
& | Frank | 19 250 300
3 | Caren| 62 200 3000 BUCKET (D,)
ouT| 0
| ‘ 2
‘ 1
10 James 37 400 1700
1 Alica 24 300 1500 BUCKET (D)
1 8
2
3

U.S. Patent Jan. 12, 2016 Sheet 28 of 28 US 9,235,578 B2
(100
COMPUTER
(102 <103 - 104 ;105
cPU INPUT OUTPUT COMMUNICATION
DEVICE APPARATUS INTERFACE
(101
<108 ¢ 107 (108
RAM HDD MEDIA READER
- 108a -107a
DATA DATA
PARTITIONING PARTITIONING
PROCESS PROGRAM

US 9,235,578 B2

1
DATA PARTITIONING APPARATUS AND
DATA PARTITIONING METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2011-
167784, filed on Jul. 29, 2011, the entire contents of which are
incorporated herein by reference.

FIELD

The embodiments discussed herein are directed to a data
partitioning apparatus, a data partitioning method, and a data
partitioning program.

BACKGROUND

In recent years, with the development and popularization
of network technology and sensor technology, attention has
been given to stream processing which is designed to process,
in real time, large amount of stream data that are generated
every moment.

For example, stream processing is used to aggregate
instantaneous sales by receiving point of sale (POS) system
data as stream data and to partition the received POS data into
multiple groups. Furthermore, stream processing is used to
aggregate instantaneous traffic volumes by receiving probe
traffic information as stream data and to partition the received
probe traffic information into multiple groups.

A known technology is used for stream processing, in
which stream data are accumulated as records, and, if an
instruction is received from a user, the accumulated records
are partitioned. For example, stream data that do not contain
an item, such as a sequence number, used to specify a record
are sorted by using a specific item in the stream data and are
then accumulated. The sequence number mentioned here is
the number sequentially allocated to, for example, data from
the top or from the end. Then, if a partition request is received
from a user, the records that are sorted and accumulated are
partitioned and output to the user.

Patent Literature: Japanese Laid-open Patent Publication
No. 2007-011784

SUMMARY

According to an aspect of an embodiment of the invention,
a data partitioning apparatus includes a data storing unit that
stores therein data associated with previous-and-subsequent
information that specifies previous and subsequent data; an
information storing unit that stores therein, for groups, each
of which contains the data that are stored in the data storing
unit and that are partitioned into a previously determined
number of the groups, top information that specifies data
located at the top in a corresponding group and end informa-
tion that specifies data located at the end in the corresponding
group; a storing control unit that, when new data is stored in
the data storing unit, specifies data that are previous to and
subsequent to the new data in accordance with an item con-
tained in the new data and that stores, in the data storing unit,
the new data by associating the new data with the previous-
and-subsequent information that specifies the data previous
and subsequent to the new data; and an updating unit that,
when the new data is stored by the storing control unit,
updates the top information and the end information for the
groups stored in the information storing unit such that the

10

15

20

25

30

35

40

45

50

55

60

65

2

difference between the number of data belonging to each of
the groups is equal to or less than one.

The object and advantages of the embodiment will be
realized and attained by means of the elements and combina-
tions particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the embodi-
ment, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1is a schematic diagram illustrating an example of the
overall configuration of a system according to a first embodi-
ment;

FIG. 2 is a functional block diagram illustrating the con-
figuration of a data partitioning apparatus according to the
first embodiment;

FIG. 3 is a schematic diagram illustrating an example of
information stored in a received data DB;

FIG. 41is a schematic diagram illustrating an example of the
implementation of the received data DB;

FIG. 5 is a schematic diagram illustrating buckets and
partition boundaries;

FIG. 6 is a schematic diagram illustrating an example of
information stored in a partition boundary DB;

FIG. 71is a schematic diagram illustrating bucket expansion
example 1;

FIG. 8is a schematic diagram illustrating bucket expansion
example 2;

FIG. 9 is a schematic diagram illustrating bucket shrinking
example 1;

FIG. 10 is a schematic diagram illustrating bucket shrink-
ing example 2;

FIG. 11 is a schematic diagram illustrating bucket slide
example 1;

FIG. 12 is a schematic diagram illustrating bucket slide
example 2;

FIG. 13 is a flowchart illustrating the flow of a process,
from the splitting to the outputting data, performed by the
data partitioning apparatus;

FIG. 14 is a flowchart illustrating the flow of a partition
boundary updating process performed by the data partition-
ing apparatus;

FIG. 15 is a flowchart illustrating the flow of sub flow 1 of
the partition boundary updating process;

FIG. 16 is a flowchart illustrating the flow of sub flow 2 of
the partition boundary updating process;

FIG. 17 is a schematic diagram illustrating a specific
example of stream data;

FIG. 18 is a schematic diagram illustrating a specific
example of a partition boundary;

FIG. 19 is a schematic diagram illustrating a specific
example of partitioning;

FIG. 20 is a schematic diagram illustrating a specific
example of partitioning;

FIG. 21 is a schematic diagram illustrating a specific
example of partitioning;

FIG. 22 is a schematic diagram illustrating a specific par-
tition example;

FIG. 23 is a schematic diagram illustrating a specific par-
tition example;

FIG. 24 is a schematic diagram illustrating a specific
example of partitioning;

FIG. 25 is a schematic diagram illustrating a specific
example of partitioning;

US 9,235,578 B2

3

FIG. 26 is a schematic diagram illustrating a specific
example of partitioning;

FIG. 27 is a schematic diagram illustrating a specific
example of partitioning;

FIG. 28 is a schematic diagram illustrating the processing
results obtained from a specific example of partitioning;

FIG. 29 is a schematic diagram illustrating the results of
partitioning data performed by the data partitioning appara-
tus;

FIG. 30 is a schematic diagram illustrating a specific
example of outputting data;

FIG. 31 is a schematic diagram illustrating a specific
example of outputting data;

FIG. 32 is a schematic diagram illustrating a specific
example of outputting data; and

FIG. 33 is a block diagram illustrating the hardware con-
figuration of a computer that executes a data partitioning
program.

DESCRIPTION OF EMBODIMENTS

Preferred embodiments of the present invention will be
explained with reference to accompanying drawings. The
present invention is not limited to the embodiments.

With the conventional technology, there is a problem in that
it takes a long time to group the stream data that do not contain
an item, such as a sequence number, used to specify a record.

For example, when grouping the stream data that are sorted
after being accumulated, the partition position of a record
with respect to the entire data is specified. Then, the accumu-
lated records are sequentially read up to the record specified
as the partition position and the records that have been read
are partitioned as one group. Accordingly, when partitioning
the records into multiple groups, a process for specifying the
partition position, reading the records, and grouping the
records is repeatedly performed for each group; therefore, the
process for grouping all of the records into multiple groups
takes a long time.

It is conceivable to allocate a sequence number to each
piece of the stream data after they have been accumulated and
sorted. However, this is impractical because processing loads
for sorting stream data every time they are received and then
allocating a new sequence number after performing the sort-
ing is large.

[a] First Embodiment

In a first embodiment, a description will be given of an
example of the overall configuration of a system that includes
the data partitioning apparatus, a functional block diagram
illustrating the configuration of the data partitioning appara-
tus, the flow of processes, and the like.

Overall Configuration

FIG.11s a schematic diagram illustrating an example of the
overall configuration of a system according to a first embodi-
ment. As illustrated in FIG. 1, this system includes a stream
data generating unit 1, a data partitioning apparatus 10, and a
user terminal 5. The stream data generating unit 1 is con-
nected to the data partitioning apparatus 10 via a network.
Similarly, the user terminal 5 is connected to the data parti-
tioning apparatus 10 via a network.

The stream data generating unit 1 is a unit that transmits
stream data to the data partitioning apparatus 10 in the order
the stream data are generated. For example, the stream data
generating unit 1 transmits, to the data partitioning apparatus
10, POS data or probe traffic information as stream data. In
the first embodiment, a description will be given of a case in
which POS data is used as stream data.

10

20

25

40

45

55

60

4

The user terminal 5 is a unit that is used by a user who
manages and analyzes the stream data generated by the
stream data generating unit 1. The user terminal 5 acquires
desired stream data from the data partitioning apparatus 10.
The user analyzes the stream data acquired by using the user
terminal 5 and aggregates, for example, instantaneous sales or
instantaneous traffic volume.

The data partitioning apparatus 10 receives the stream data
from the stream data generating unit 1 and stores data that are
associated with previous-and-subsequent information that
specifies the previous and subsequent data. Then, for groups,
each of which contains the data that are stored and that are
partitioned into a previously determined number of groups,
the data partitioning apparatus 10 stores top information that
specifies data located at the top in the corresponding group
and end information that specifies data located at the end in
the corresponding group. Then, if the data partitioning appa-
ratus 10 stores new data, the data partitioning apparatus 10
specifies, in accordance with an item contained in the new
data, data that are previous and subsequent to the new data
and stores the new data by associating it with the previous-
and-subsequent information that specifies data previous and
the subsequent to the new data. Then, if the new data is stored,
the data partitioning apparatus 10 updates top information
and end information for groups such that the difference
between the number of data belonging to each group becomes
equal to or less than one.

As described above, every time the data partitioning appa-
ratus 10 receives a single piece of stream data, the data par-
titioning apparatus 10 can sequentially update the top infor-
mation and the end information that are partition boundaries
and equally partition the received stream data. Accordingly,
the data partitioning apparatus 10 can group the data without
allocating a sequence number, thus reducing the time taken to
partition the data.

Configuration of the Data Partitioning Apparatus

FIG. 2 is a functional block diagram illustrating the con-
figuration of a data partitioning apparatus according to the
first embodiment. As illustrated in FIG. 2, the data partition-
ing apparatus 10 includes a communication control interface
(I/F) unit 11, a storing unit 12, and a control unit 13. The
storing unit 12 is a storage device, such as a semiconductor
memory device or a hard disk. The control unit 13 is an
integrated circuit, such as a field-programmable gate array
(FPGA), or an electronic circuit, such as a central processing
unit (CPU). The processing units included in the data parti-
tioning apparatus 10 are only examples and the configuration
is not limited thereto. For example, the data partitioning appa-
ratus 10 may also include an input device, such as a mouse, or
a display device, such as a display.

The communication control I/F unit 11 is an interface that
controls communication with another device and is, for
example, a network interface card. For example, the commu-
nication control I/F unit 11 receives stream data from the
stream data generating unit 1 and outputs it to the control unit
13. Furthermore, the communication control I/F unit 11
receives a data acquisition request from the user terminal 5;
outputs it to the control unit 13; and transmits the data output
from the control unit 13 to the user terminal 5.

The storing unit 12 stores therein a program or data
executed by the control unit 13 and includes a received data
DB 124 and a partition boundary DB 124. Furthermore, the
storing unit 12 also includes a work area and the like in which
data is temporarily stored when various processing units
included in the control unit 13 perform processes.

The received data DB 124 is a database that stores therein
data associated with previous-and-subsequent information

US 9,235,578 B2

5

that specifies the previous and the subsequent data. Specifi-
cally, the received data DB 12q is a database that stores
therein stream data that are aligned in a predetermined
sequence. FIG. 3 is a schematic diagram illustrating an
example of information stored in a received data DB. As
illustrated in FIG. 3, the received data DB 12a stores therein
the “time, name, age, annual income (unit: 10,000 Yen), and
payment (unit: Yen)” as a single record. In this case, the
“time” is the time at which the stream data is received; the
“name” is the name of the user notified as POS data; the “age”
is the age of the user; the “annual income™ is the annual
income of the user; and the “payment” is the amount paid by
the user. The information illustrated in FIG. 3 is only an
example and the information is not limited thereto. Any infor-
mation may be set.

In the first embodiment, as illustrated in FIG. 3, the
received data DB 124 stores therein information by sorting
annual incomes in descending order; however, the embodi-
ment is not limited thereto. Any item may also be used for the
sort. In the example illustrated in FIG. 3, the received data DB
12a stores therein information in the order of “Iris”, as a top,
whose annual income is “12 million Yen” and which is
received at time “9”, “Dick”, “Erik”, “Henry”, “George”,
“Bob”, “Alice”, “Frank” and “Caren”.

In the following, a specific example of data stored in the
received data DB 124 will be described. FIG. 4 is a schematic
diagram illustrating an example of the implementation of the
received data DB. As illustrated in FIG. 4, the received data
DB 12a stores therein data by associating them with pointers
specifying the data previous to and subsequent to the target
data. Specifically, for Iris received at time 9, a NULL is
associated as a pointer to the previous data and Dick received
at time 4 is associated as a pointer to the subsequent data.
Similarly, for Dick received at time 4, Iris received at time 9
is associated as a pointer to the previous data and Erik
received at time 5 is associated as a pointer to the subsequent
data. Similarly, for Erik received at time 5, Dick received at
time 4 is associated as a pointer to the previous data and Henry
received at time 8 is associated as a pointer to the subsequent
data. Similarly, for Henry received at time 8, Erik received at
time 5 is associated as a pointer to the previous data and a
NULL is associated as a pointer as the subsequent data. The
implementation example described above is only an example;
therefore, the configuration is not limited thereto.

In the following, terms used to describe the first embodi-
ment will be explained. In the first embodiment, each set of
data equally partitioned after the sorting is referred to as a
“bucket”. The boundary of each bucket is referred to as a
“partition boundary”. Furthermore, “equal partitioning” indi-
cates that, if the number of data N cannot be divided by the
number of partitions M, the partitioning is performed such
that the size difference between buckets is a maximum of 1.
Specifically, if the number of data is 10 and if the number of
partitions is 3, instead of performing the partitioning such that
the difference between the number of partitioned data is equal
to or greater than 2, such as “2”, “3”, and *“5”, the partitioning
is performed such that the difference between the number of
partitioned data is equal to or less than 1, such as “3”, “3”, and
“4”. Furthermore, a bucket that has a large number of data is
referred to as a “large bucket”, whereas a bucket that has a
small number of data is referred to as a “small bucket”.
Furthermore, if the number of data N can be divided by the
number of partitions M, “equal partitioning” is performed
such that the size of all of the buckets becomes the same. At
this time, for convenience, all of the buckets are assumed to be
a “small bucket”.

20

25

30

40

45

50

6

In the following, a specific example that uses the above
terms will be described. FIG. 5 is a schematic diagram illus-
trating buckets and partition boundaries. In the example illus-
trated in FIG. 5, the stream data from time 1 to 9 are sorted in
the descending order of the annual income. In this example,
because the number of data is nine, the number of data
belonging to each bucket is three. Specifically, the data par-
titioning apparatus 10 performs the partitioning such that
time 9, time 4, and time 5 are included in a bucket (D,); such
that time 8, time 7, and time 2 are included in a bucket (D,);
and such that time 1, time 6, and time 3 are included in a
bucket (D). Furthermore, the boundary between the bucket
(D,) and the bucket (D,) and the boundary between the bucket
(D) and the bucket (D,) are partition boundaries.

Referring back to FIG. 2, the partition boundary DB 125 is
a database that stores therein information that specifies a
partition boundary. FIG. 6 is a schematic diagram illustrating
an example of information stored in a partition boundary DB.
As illustrated in FIG. 6, the partition boundary DB 125 stores
therein, in an associated manner, the “bucket name, the num-
ber of data (size), top information, and end information”. The
“bucket name” stored in this case is an identifier that identifies
a bucket and is, for example, the title of a bucket. The “num-
ber of data (size)” is the number of data belonging to a bucket.
If the number of data is three, the size is 3. The “top informa-
tion” is a pointer indicating the top data belonging to a bucket
and can be specified by, for example, an arbitrary item that
canidentify data, such as “time”, or by a logical address of the
target data. The “end information” is a pointer indicating the
end of the data belonging to a bucket and can be specified by,
for example, an arbitrary item that can identify data, such as
“time”, or by a logical address of the target data. In the first
embodiment, “time” is used as the “top information” and the
“end information”.

For convenience, it is assumed that the information on the
buckets with the size 0 and the size 1 is stored in the partition
boundary DB 124 to satisfy the conditions below. It is
assumed that the “top information” and the “end information”
corresponding to the bucket with the size 0 are both “NULL”.
It is assumed that “NULL” as the “top information” and the
“end information” stored in the partition boundary DB rep-
resents, for convenience, the last virtual data located imme-
diately below the end data stored in the received data DB 12a.
Furthermore, in the “top information” and the “end informa-
tion” associated with the bucket having size 1, data that are
only contained in each of the corresponding bucket are stored.

The example illustrated in FIG. 6 indicates that three data,
i.e., from data containing time 9 to data containing time 5,
belong to the bucket (D,); indicates that three data, i.e., from
data containing time 8 to data containing time 2, belong to the
bucket (D,); and indicate that three data, i.e., from data con-
taining time 1 to data containing time 6, belong to the bucket
(D5). The example of the database illustrated in FIG. 6 is only
an example and the configuration is not limited thereto. For
example, it is possible to use the same data format as that
illustrated in FIG. 3 or another data format may also be used.
Similarly, an arbitrary data format may also be used for the
stream data group after sorting.

The control unit 13 is a processing unit that performs the
overall control of the data partitioning apparatus 10 and
includes a number-of-partitions setting unit 14, a partition
processing unit 15, and an output unit 21. The number-of-
partitions setting unit 14 is a processing unit that receives the
number of partitions from the user terminal 5 or the like and
notifies the partition processing unit 15 of this number. For
example, when receiving the number of partitions “3” from
the user terminal 5, the number-of-partitions setting unit 14

US 9,235,578 B2

7

notifies the partition processing unit 15 of the received num-
ber and stores it in, for example, a work area in the storing unit
12. Furthermore, the number-of-partitions setting unit 14
receives the data item that is used for the sorting from the user
terminal 5 and notifies the partition processing unit 15 of the
fact.

The partition processing unit 15 is a processing unit that
includes a receiving unit 16, a position specifying unit 17, a
storing control unit 18, a bucket determining unit 19, and an
updating unit 20. The partition processing unit 15 equally
partitions received stream data by using these units.

The receiving unit 16 is a processing unit that receives
stream data from the stream data generating unit 1. The
receiving unit 16 receives the stream data from the stream
data generating unit 1 and outputs the received stream data to
the position specifying unit 17. The receiving unit 16 may
also store the received stream data in, for example, a work
area in the storing unit 12 in the order in which the stream data
are received.

The position specifying unit 17 is a processing unit that
specifies the insertion point, into the received data DB 12aq,
for the stream data received by the receiving unit 16 and
notifies the storing control unit 18 of the specified result. For
example, the position specifying unit 17 specifies the data
item to be sorted from the received stream data and extracts
the target value. Then, the position specifying unit 17 refers to
the data item to be sorted in each record in the stream data
stored in the received data DB 12« and specifies an insertion
point indicated by the extracted value.

As a specific example, it is assumed that the position speci-
fying unit 17 receives, in the state in which the data illustrated
in FIG. 3 are stored in the received data DB 12a, data con-
taining “10, Jane, 45, 900, and 2300” as information on the
“time, name, age, annual income, and payment”. In such a
case, the position specifying unit 17 specifies, from the
received stream data, the “annual income” that is the item
used for the sorting and extracts “900” as a target value. Then,
the position specifying unit 17 refers to the data item to be
sorted in each record in the stream data stored in the received
data DB 12a and specifies that a point between the record
indicating the annual income “1000” and the record indicat-
ing the annual income “800” is the insertion point of the
extracted target value “900”.

For another example, the position specifying unit 17 stores
the received stream data in a work area in the storing unit 12
and sorts the received data when storing them. Then, the
position specifying unit 17 may also determine the insertion
point of the received stream data by comparing the sorted data
with the stream data to be stored in the received data DB 12a.

For another example, it is assumed that the position speci-
fying unit 17 receives, in the state in which the data illustrated
in FIG. 3 is stored in the received data DB 12a and the state in
which the data illustrated in FIG. 6 is stored in the partition
boundary DB 125, data containing “10, Jane, 45, 900, and
23007 as information on the “time, name, age, annual income,
and payment”. In such a case, the position specifying unit 17
specifies, from the received stream data, the “annual income”
that is the item used for the sorting and extracts “900” as a
target value. Then, by referring to the “top information” and
the “end information” in each bucket registered in the parti-
tion boundary DB 124 and further referring to the received
data DB 124, the position specifying unit 17 extracts the
annual income appearing in the top data and in the end data in
each bucket and specifies a bucket into which they are to be
inserted. Specifically, because the annual incomes appearing
in the top data and the end data in the bucket (D,) are “1200”
and “8007, respectively, the position specifying unit 17 speci-

10

15

20

25

30

35

40

45

50

55

60

65

8

fies that the bucket into which “900” is inserted is D,. Then,
by further referring, inclusively, between the top data and the
end data in the bucket (D,) stored in the received data DB 12a,
the position specifying unit 17 specifies that the insertion
point of the extracted “900” is between the record indicating
the annual income “1000” and the record indicating the
annual income “800”. Furthermore, there may be a case in
which received data is not inserted into any bucket, i.e., a case
in which received data is inserted into a boundary between the
adjacent buckets or a case in which received data is inserted
into the top or the end of the data stored in the received data
DB; however, in both cases, the insertion point of the received
data can be specified by using the “top information” and the
“end information” stored in the partition boundary DB 124.

When target data is stored in the received data DB 12a, the
storing control unit 18 specifies, in accordance with the item
contained in the target data, data that are located previous and
subsequent to the target data and stores, in the received data
DB 124, the target data by associating it with previous-and-
subsequent information that specifies the previous and sub-
sequent data. In other words, the storing control unit 18 is a
processing unit that inserts the stream data received by the
receiving unit 16 into the insertion point specified by the
position specifying unit 17.

Specifically, it is assumed that a point between the record
indicating the annual income “1000” and the record indicat-
ing the annual income “800” is specified as the insertion
point. In such a case, the storing control unit 18 inserts the
received “10, Jane, 45, 900, and 2300” between the record
indicating the annual income “1000” and the record indicat-
ing the annual income “800”. At this time, between the pre-
vious-and-subsequent information associated with the record
indicating the annual income “1000”, the storing control unit
18 changes a pointer to the subsequent data from “time 5 and
Erik” to “time 10 and Jane”. Furthermore, between the pre-
vious-and-subsequent information associated with the record
indicating the annual income “8007, the storing control unit
18 changes a pointer to the previous data from “time 4 and
Dick” to “time 10 and Jane”. Then, for the data “10, Jane, 45,
900, and 23007, the storing control unit 18 stores therein, as
the previous-and-subsequent information, a pointer to the
previous data, i.e., “time 4 and Dick” and a pointer to the
subsequent data, i.e., “time 5 and Erik”. In this way, the
storing control unit 18 stores therein new data in the received
data DB 124. Furthermore, the storing control unit 18 notifies
the bucket determining unit 19 that new stream data is stored
in the received data DB 12a.

The bucket determining unit 19 is a processing unit that
determines whether each bucket that groups data stored in the
received data DB 12a is a small bucket or a large bucket. For
example, if data is stored by the storing control unit 18, the
bucket determining unit 19 scans the number of data belong-
ing to each bucket; refers to the received data DB 12a or the
partition boundary DB 1254; and specifies the size of each
bucket. Then, the bucket determining unit 19 notifies the
updating unit 20 of the specified information.

The updating unit 20 includes an expansion execution unit
20a, a shrinking execution unit 205, and a slide execution unit
20c. If data is inserted by the storing control unit 18, the
updating unit 20 updates, using these processes, the top infor-
mation and the end information for groups stored in the par-
tition boundary DB 125 such that the difference between the
number of data belonging to each of the groups becomes
equal to or less than one.

The expansion execution unit 20q is a processing unit that
expands the specified bucket in the upward or downward
direction and updates the state of the bucket information

US 9,235,578 B2

9

stored in the partition boundary DB 1254 to the expanded state.
FIG. 7 is a schematic diagram illustrating bucket expansion
example 1. As illustrated in FIG. 7, on the basis of the deter-
mination result performed by the bucket determining unit 19,
the expansion execution unit 20a determines that a bucket
(D,,) is expanded in the upward direction. In such a case, the
expansion execution unit 20a expands the bucket (D) in the
upward direction by incrementing the number of data by one
by replacing the top information in the bucket (D) with data
immediately above. A method for expanding the bucket (D,)
in the upward direction in this way is referred to as an upex-
pand (p). Blank rectangles illustrated in FIG. 7 indicates
sorted records (data). An example in which the expansion
execution unit 20a determines that the bucket D,, is expanded
in the upward direction will be described in detail in a descrip-
tion of the flow of the process.

FIG. 8 is a schematic diagram illustrating bucket expansion
example 2. As illustrated in FIG. 8, the expansion execution
unit 20a determines that the bucket (D,) is expanded in the
downward direction on the basis of the determination result
performed by the bucket determining unit 19. In such a case,
the expansion execution unit 20a expands the bucket (D,) in
the downward direction by incrementing the number of data
by one by replacing the end information in the bucket (D,)
with data immediately below. A method for expanding the
bucket (D,) in the downward direction in this way is referred
to as a downexpand (p). Furthermore, blank rectangles illus-
trated in FIG. 8 indicates sorted records (data). An example in
which the expansion execution unit 20a determines to expand
the bucket D, in the downward direction will be described in
detail in a description of the flow of the process.

The shrinking execution unit 205 is a processing unit that
shrinks the specified bucket in the upward or downward direc-
tion and updates the partition boundary DB 125 such that it
contains shrunken bucket information. FIG. 9 is a schematic
diagram illustrating bucket shrinking example 1. As illus-
trated in FIG. 9, the shrinking execution unit 205 determines
to shrink the bucket (D,) in the upward direction in accor-
dance with the determination result performed by the bucket
determining unit 19. In such a case, the shrinking execution
unit 205 shrinks the bucket (D,,) in the upward direction by
decrementing the number of data by one by replacing the end
information in the bucket (D,) with data immediately above.
A method for shrinking the bucket (D,) in the upward direc-
tion in this way is referred to as upshrink (p). Furthermore,
blank rectangles illustrated in FIG. 9 indicates sorted records
(data).

FIG. 10 is a schematic diagram illustrating bucket shrink-
ing example 2. As illustrated in FIG. 10, the shrinking execu-
tion unit 205 determines to shrink the bucket (D,) in the
downward direction in accordance with the determination
result performed by the bucket determining unit 19. In such a
case, the shrinking execution unit 205 determines to shrink
the bucket (D) in the downward direction by decrementing
the number of data by one by replacing the top information in
the bucket (D,) with data immediately below. A method for
shrinking the bucket (D,) in the downward direction in this
way is referred to as downshrink (p). Furthermore, blank
rectangles illustrated in FIG. 10 indicates sorted records
(data). An example in which the shrinking execution unit 205
determines to shrink the bucket (D,) in the upward or down-
ward direction will be described in detail below in a descrip-
tion of the flow of the process later.

The slide execution unit 20c¢ is a processing unit that shifts
consecutive multiple buckets in the upward or downward
direction by one data without changing the number of data
belonging to each bucket. FIG. 11 is a schematic diagram

10

15

20

25

30

35

40

45

50

55

60

10

illustrating bucket slide example 1. As illustrated in FIG. 11,
on the basis of the determination result performed by the
bucket determining unit 19, the slide execution unit 20¢ deter-
mines to upwardly shift the buckets between the bucket (D,)
and a bucket (D). In such a case, the slide execution unit 20c
upwardly shifts the data by one without changing the size of
each of the buckets between the bucket (D) and the bucket
(D,). Specifically, the slide execution unit 20c replaces the
top and the end information in each of the target buckets
between the bucket (D,)) and the bucket (D) with data imme-
diately above the subject information. In this case, a descrip-
tion will be given with the assumption that p<q. A method for
shifting the buckets between the bucket (D) and the bucket
(D,) in the upward direction is referred to as upslide (p, q).
Furthermore, blank rectangles illustrated in FIG. 11 indicate
sorted records.

FIG. 12 is a schematic diagram illustrating bucket slide
example 2. As illustrated in FIG. 12, on the basis of the
determination result performed by the bucket determining
unit 19, the slide execution unit 20¢ determines to shift the
buckets between the bucket (D,,) and the bucket (D). In such
acase, the slide execution unit 20c downwardly shifts data by
one data with respect to the buckets between the bucket (D)
and the bucket (D). Specifically, the slide execution unit 20c
replaces the top and the end information in each of the target
buckets between the bucket (D,) and the bucket (D,) with
data immediately below the subject information. In this case,
a description will be given with the assumption that p<q. A
method for shifting the buckets between the bucket (D) and
the bucket (D,) in the downward direction is referred to as
downslide (p, q). Furthermore, blank rectangles illustrated in
FIG. 12 indicate sorted records. An example in which the
slide execution unit 20c¢ determines to shift each bucket in the
upward or downward direction will be described in detail in a
description of the flow of the process later.

The output unit 21 reads, from the partition boundary DB
125, the top information and the end information in a group
specified by a user from among the groups containing parti-
tioned data stored in the received data DB 12a. Then, the
output unit 21 reads, from the received data DB 12a, data
corresponding to the read top information and data corre-
sponding to the read end information and outputs them to a
predetermined unit.

For example, if it is assumed that the output unit 21
receives, from the user terminal 5, a request for outputting the
buckets between the bucket (D,) and the bucket (D,), then in
such a case, first, the output unit 21 acquires the top informa-
tion and the end information in the bucket (D,) from the
partition boundary DB 125. Then, the output unit 21 reads,
inclusively, each of the records that appear between the record
specified by the acquired top information and the record
specified by the end information. Then, the output unit 21
transmits, to the user terminal 5, each read record as data on
the bucket (D).

Subsequently, the output unit 21 acquires the top informa-
tion and the end information in the bucket (D,) from the
partition boundary DB 125. Then, the output unit 21 reads,
inclusively, each of the records between the record specified
by the acquired top information and the record specified by
the end information. Then, the output unit 21 transmits, to the
user terminal 5, each of the read record as data on the bucket
D5).

Flow of a Process

In the following, the flow of a process performed by the
data partitioning apparatus 10 will be described with refer-

US 9,235,578 B2

11

enceto FIGS. 13 to 16. The overall flow of the process will be
described first and then the sub flow of each process will be
described.

Overall Flow of the Process

FIG. 13 is a flowchart illustrating the flow of a process,
from the splitting to the outputting data, performed by the
data partitioning apparatus. A description will be given by
using an example in which the receiving unit 16 sequentially
stores the received stream data in a work area in the storing
unit 12. Furthermore, the stream data to be stored is referred
to as S[i] (i is a natural number).

As illustrated in FIG. 13, the storing control unit 18 reads,
from the storing unit 12, S[1] that is the top data of the stream
data to be stored and stores it in the top bucket stored in the
received data DB 12q (S101).

Then, the position specifying unit 17 increments i; there-
fore, i=2 is obtained (S102), and determines whether the
stream data S[i] is stored in a work area or the like in the
storing unit 12 (S103). Then, if the stream data S[i] is not
present (No at S103), the position specifying unit 17 ends the
process.

In contrast, if the stream data S[i] is present (Yes at S103),
the position specifying unit 17 reads the stream data S[i]
from, for example, a work area (S104) and specifies, in accor-
dance with the item that is used for the sorting, an insertion
point (j) inthe received data DB 12a. Then, the storing control
unit 18 inserts the stream data S[i] into the insertion point (j)
specified by the position specifying unit 17 (S105). Specifi-
cally, the storing control unit 18 updates the previous-and-
subsequent information with respect to the inserted stream
data S[i] and updates each of the previous-and-subsequent
information on the data previous to and subsequent to the
insertion point.

Then, both the bucket determining unit 19 and the updating
unit 20 perform the partition boundary updating process and
update the partition boundary of the buckets (S106). There-
after, if an output request is received at the current time i (Yes
at S107), the output unit 21 reads, from the received data DB
124, the data corresponding to the bucket specified by the user
terminal 5 and outputs the data to the user terminal 5 (S108).

Then, after incrementing i by one (S109), the position
specifying unit 17 repeats the process at S103 and the subse-
quent processes. In contrast, if an output request has not been
received at S107 (No at S107), the position specifying unit 17
performs the process at S109 without performing the process
at S108.

Flow of the Partition Boundary Updating Process

FIG. 14 is a flowchart illustrating the flow of a partition
boundary updating process performed by the data partition-
ing apparatus. As illustrated in FIG. 14, the bucket determin-
ing unit 19 determines whether new data (hereinafter, referred
to as insertion data (d)) is inserted into the bucket (D,,) (S201).

For example, the bucket determining unit 19 refers to the
received data DB 12a to specify the times between which the
data is inserted. Then, by referring to the received data DB
12a and the partition boundary DB 125, the bucket determin-
ing unit 19 determines the positions of the specified times in
the buckets.

For example, in the data illustrated in FIGS. 4 and 5, it is
assumed that the data containing time 10 is inserted between
data containing time 9 and time 4. In such a case, the bucket
determining unit 19 specifies that the insertion point is
between time 9 and time 4 by comparing the status of the
received data DB 124 before the insertion with the status of
the received data DB 12a after the insertion. Subsequently, by
referring to FIG. 5, the bucket determining unit 19 specifies
that both data containing time 9 and time 4 belong to the

10

15

20

25

30

35

40

45

50

55

60

65

12

bucket (D)) and specifies that data time 9, time 4, and time 5
are present in the bucket (D,). Accordingly, because the data
containing time 5 is present subsequent to time 4, the bucket
determining unit 19 determines that the data containing time
10 is inserted into the bucket.

A description will be given here by referring back to FIG.
14. If the insertion data (d) is inserted into the bucket (D,)
(Yes at S201), the bucket determining unit 19 determines
whether the bucket into which the data is inserted is a small
bucket (5202).

For example, as illustrated in FIG. 5, it is assumed that, in
the state in which the number of data in each of the buckets is
3, data is inserted into the bucket (D,). In such a case, because
the number of data in the bucket (D) becomes four and thus
because the difference between the number of data belonging
to the other bucket is equal to or greater than one, the bucket
determining unit 19 determines that the bucket into which the
data is inserted is a large bucket. For another example, it is
assumed that data is inserted into the bucket (D) in the state
in which the number of data in the bucket (D,) is “3”, in which
the number of data in the bucket (D,) is “3”, and in which the
number of data in the bucket (D;) is “2”. In such a case,
because the number of data in the bucket (D;) becomes three
and thus because the difference between the number of data
belonging to the other bucket is less than one, the bucket
determining unit 19 determines that the bucket into which the
data is inserted is a small bucket.

A description will be given here by referring back to FIG.
14. If the bucket determining unit 19 determines that the
bucket (D) is a small bucket (Yes at S202), the updating unit
20 performs “process 17 (S203). Specifically, the updating
unit 20 increments the number of data in the bucket (D,)
stored in the partition boundary DB 125 by one and then ends
the process.

In contrast, if the bucket determining unit 19 determines
that the bucket (D,)) is a large bucket (No at S202), the updat-
ing unit 20 performs “process 2” (S204) and ends the process.
Specifically, the updating unit 20 increments the number of
data in the bucket (D,) stored in the partition boundary DB
125 by one and defines the small bucket closest to the bucket
(D,,) as the bucket (D).

If p<q, i.e., if the bucket (D,) is present above the bucket
(D,), the updating unit 20 performs upslide (p+1, q-1), upex-
pand (q), and upshrink (p). Specifically, the slide execution
unit 20c¢ replaces the top and the end information in each of
the buckets between the bucket (D,,,), which is immediately
below the bucket (D,,), and the bucket (D, _,), which is imme-
diately above the bucket (D,), with the data immediately
above. Then, by replacing the top information in the bucket
(D,) with the data immediately above to increment the num-
ber of data, i.e., the bucket size, belonging to the bucket by
one, the expansion execution unit 20a expands the bucket
(D,) in the upward direction. Furthermore, by replacing the
end information in the bucket (D) with the data immediately
above the subject data to decrement the number of data, i.e.,
the bucket size, by one, the shrinking execution unit 205
shrinks the bucket (D,) in the upward direction.

In contrast, if p>q, i.e., if the bucket (D,,) is present below
the bucket (D,), the updating unit 20 performs downslide
(q+1, p-1), downexpand (q), and downshrink (p). Specifi-
cally, the slide execution unit 20c¢ replaces the top and the end
information in each of the buckets between the bucket (D, ,),
which is immediately below the bucket (D,) and the bucket
(D,_1), which is immediately above the bucket (D,,) with the
data immediately below. Then, by replacing the end informa-
tion in the bucket (D,) with the data immediately below to
increment the number of data by one, the expansion execution

US 9,235,578 B2

13

unit 20a expands the bucket (D,) in the downward direction.
Furthermore, by replacing the top information in the bucket
(D,) with the data immediately below to decrement the num-
ber of data by one, the shrinking execution unit 205 shrinks
the bucket (D,,) in the downward direction.

A description will be given here by referring back to FIG.
14. If the bucket determining unit 19 determines that the
insertion data (d) is not inserted into the bucket (D,) (No at
S201), the bucket determining unit 19 determines whether the
insertion data (d) is inserted between the bucket (D,,) and the
bucket (D,) (S205).

A description will be given here as an example by using
data illustrated in FIGS. 4 and 5. If new data is inserted
between time 5 and time 8 or between time 2 and time 1, the
bucket determining unit 19 determines that the insertion data
(d) is inserted between the buckets. Specifically, if the inser-
tion point of the insertion data (d) is located between the end
information in the bucket (D,,) and the top information in the
bucket (D,,,,), the bucket determining unit 19 refers to the
partition boundary DB 125 and determines that the insertion
data (d) is inserted between the buckets.

A description will be given here by referring back to FIG.
14. If the bucket determining unit 19 determines that the
insertion data (d) is inserted between the bucket (D,,) and the
bucket (D,,,,) (Yes at S205), the updating unit 20 performs
sub flow 1 (S206). In contrast, if the bucket determining unit
19 determines that the insertion data (d) is not inserted
between the bucket (D) and the bucket (D, ;) (No at S205),
the updating unit 20 performs sub flow 2 (S207).

Flow of Sub Flow 1

FIG. 15 is a flowchart illustrating the flow of sub flow 1 of
the partition boundary updating process. As illustrated in
FIG. 15, if the bucket determining unit 19 determines that the
bucket (D,) is a small bucket (Yes at S301), the updating unit
20 performs “process 3” (S302). Specifically, the updating
unit 20 modifies the end information in the bucket (D,,) stored
in the partition boundary DB 125 to information on the inser-
tion data (d), thereby incrementing the number of data by one.

In contrast, if the bucket determining unit 19 determines
that the bucket (D,) is not a small bucket (No at S301), the
bucket determining unit 19 determines whether both the
bucket (D) and the bucket (D,,, ,) are large buckets (S303). If
the bucket determining unit 19 determines that both the
bucket (D,) and the bucket (D,,,,) are large buckets (Yes at
S303), the updating unit 20 performs “process 4” (S304).

Specifically, the updating unit 20 defines a small bucket
closest to the bucket (D) or the bucket (D,,,) as the bucket
(D). If p+1<q, i.e., the bucket (D, ,) immediately below the
bucket (D,) is present above the bucket (D), the updating unit
20 performs the upslide (p+1, q-1) and the upexpand (q).
Specifically, the slide execution unit 20¢ replaces the top
information and the end information in each of the buckets
between the bucket (D,,,), which is the bucket immediately
below the bucket (D,), and the bucket (D,_,), which is the
bucket immediately above the bucket (D,), with the data
immediately above. Furthermore, the expansion execution
unit 20a replaces the top information in the bucket (D) with
the data immediately above to increment the number of data
by one, thereby expanding the bucket (D,) in the upward
direction.

If p>q, i.e., if the bucket (D) is below the bucket (D), the
updating unit 20 performs the downslide (p, q+1) and the
downexpand (q). Specifically, the slide execution unit 20¢
replaces the top information and the end information in each
of the buckets between the bucket (D,,) and the bucket (D, ,),
which is immediately below the bucket (D,), with the data
immediately below. Furthermore, the expansion execution

30

40

45

60

14

unit 20a replaces the top information in the bucket (D,) with
the data immediately below to increment the number of data
by one, thereby expanding the bucket (D,) in the downward
direction.

A description will be given here by referring back to FIG.
15. If the bucket determining unit 19 determines that the
bucket (D,,,) is not a large bucket (No at S303), the updating
unit 20 performs “process 57 (S305). Specifically, the updat-
ing unit 20 modifies the top information in the bucket (D, ;)
stored in the partition boundary DB 125 to the information on
the insertion data (d), thereby incrementing the number of
data by one.

Flow of Sub Flow 2

FIG. 16 is a flowchart illustrating the flow of sub flow 2 of
the partition boundary updating process. As illustrated in
FIG. 16, if the bucket determining unit 19 determines, by
referring to the received data DB 12a, that the insertion point
of the insertion data (d) is the top of all of the data (Yes at
S401), the bucket determining unit 19 determines whether the
top bucket (D,) is a large bucket (S402).

If the bucket determining unit 19 determines that the top
bucket (D,) is a large bucket by referring to, for example, the
partitionboundary DB 125 (Yes at S402), the updating unit 20
performs “process 6” (S403).

Specifically, the updating unit 20 modifies the top infor-
mation in the bucket (D,) stored in the partition boundary DB
125 to the insertion data (d) to increment the number of data
by one and defines the small bucket located closest to the
bucket (D,) as the bucket (D,). Then, the updating unit 20
performs the upshrink (1), the upslide (2, q-1), and the upex-
pand (q). Specifically, the shrinking execution unit 205
replaces the end information in the bucket (D,) stored in the
partition boundary DB 1256 with the data immediately above
to decrement the number of data by one. Furthermore, the
slide execution unit 20c¢ replaces the top information and the
end information in each of the buckets between the bucket
(D,) and bucket (D,,_,) in the partition boundary DB 125 with
the data immediately above. Furthermore, the expansion
execution unit 20a replaces the top information in the bucket
(D,) stored in the partition boundary DB 126 with the data
immediately above, thereby incrementing the number of data
by one.

In contrast, if the bucket determining unit 19 determines,
by referring to the partition boundary DB 1254 or the like, that
the top bucket (D)) is not a large bucket (No at S402), the
updating unit 20 performs “process 77 (S404). Specifically,
the updating unit 20 modifies the top information in the top
bucket (D)) stored in the partition boundary DB 125 to the
information on the insertion data (d), thereby incrementing
the number of data by one.

Furthermore, at S401, if the bucket determining unit 19
determines, by referring to the received data DB 124, that the
insertion point of the insertion data (d) is not the top of the
data (No at S401), the bucket determining unit 19 determines
whether the end bucket (D,,) is a large bucket (S405). Spe-
cifically, if the bucket determining unit 19 determines that the
insertion point of the insertion data (d) is the end of the data,
the bucket determining unit 19 determines whether the end
bucket (D,,) is a large bucket.

If the bucket determining unit 19 determines, by referring
to the partition boundary DB 125 or the like, that the end
bucket (D,,) is a large bucket (Yes at S405), the updating unit
20 performs “process 8 (S406). Specifically, the updating
unit 20 modifies the end information in the end bucket (D,,)
stored in the partition boundary DB 125 to the information on
the insertion data (d), thereby incrementing the number of
data by one.

US 9,235,578 B2

15

In contrast, if the bucket determining unit 19 determines,
by referring to the partition boundary DB 1254 or the like, that
the end bucket (D,,) is not a large bucket (No at S405), the
updating unit 20 performs “process 9” (S407).

Specifically, the updating unit 20 modifies the end infor-
mation in the end bucket (D,,) stored in the partition boundary
DB 125 to the information on the insertion data (d); incre-
ments the number of data by one; and defines the small bucket
located closest to the end bucket (D,,) as the bucket (D).
Then, the updating unit 20 performs the downshrink (m), the
downslide (q+1, m-1), and the downexpand (q).

Specifically, the shrinking execution unit 205 modifies the
top information in the bucket (D,,) stored in the partition
boundary DB 125 to the data immediately below, thereby
incrementing the number of data by one. Furthermore, the
slide execution unit 20c¢ replaces the top information and the
end information in each of the buckets between the bucket
(D,.1) and the bucket (D,,_,) stored in the partition boundary
DB 126 with the data immediately below. Furthermore, the
expansion execution unit 20a replaces the end information in
the bucket (D,) stored in the partition boundary DB 125 with
the data immediately below, thereby incrementing the num-
ber of data by one.

Specific Example of Data Partitioning

In the following, a specific example of a series of processes
for receiving stream data and updating a partition boundary
will be described with reference to FIGS. 17 to 28. First,
examples of data or the like used for the specific example will
be described. FIG. 17 is a schematic diagram illustrating a
specific example of stream data. FIG. 18 is a schematic dia-
gram illustrating a specific example of a partition boundary.

The stream data generating unit 1 sequentially transmits, to
the data partitioning apparatus 10, the stream data illustrated
in FIG. 17 from the data containing time 1. The receiving unit
16 in the data partitioning apparatus 10 sequentially receives
the stream data from the data containing time 1. Stream data
includes the items “time, name, age, annual income (unit:
10,000 Yen), and payment (unit: Yen)”. The received data are
assumed to be sorted in descending order of the annual
income.

As illustrated in FIG. 18, the partition boundary DB 125 in
the data partitioning apparatus 10 stores therein, in an asso-
ciated manner for each bucket, the number of data, the top
information, and the end information. The number of data
stored in this stage is the number of data belonging to a
bucket. The top information is the data located at the top in a
bucket, in which the time associated with the top data is
stored. The end information is the data located at the end in a
bucket, in which the time associated with the end data is
stored. A description will be given with the assumption that
the number of buckets is three. Specifically, a description will
be given in a case in which the received data is partitioned into
three groups.

In the state described in the previous paragraph, it is
assumed that the receiving unit 16 receives stream data con-
taining “1, Alice, 24, 300, and 1500”. Because data is not
stored in the received data DB 124, the position specifying
unit 17 specifies that the storing position for the data on
“Alice” is the top of the received data DB 124. Then, the
storing control unit 18 stores the data on “Alice” in the top of
the received data DB 12a. Thereafter, the updating unit 20
updates the partition boundary DB 125. FIG. 19 is a sche-
matic diagram illustrating a specific example of partitioning.
As illustrated in FI1G. 19, the updating unit 20 stores “time 1”7,
which specifies the data on “Alice”, in the top information and

10

15

20

25

30

35

40

45

50

55

60

65

16

in the end information in the bucket (D)), which is the top
bucket, and then updates the number of data in the bucket (D))
to one.

Subsequently, if the receiving unit 16 receives stream data
containing “2, Bob, 55, 450, and 25007, the position specify-
ing unit 17 compares the annual income “300” of “Alice”,
which has been stored, with the annual income “450” of
“Bob”, which is received, and specifies that the storing posi-
tion of the data containing “Bob” is in the top of the received
data DB 12a. Then, the storing control unit 18 stores the data
on “Bob” in the top of the received data DB 12a. Then, the
updating unit 20 updates the partition boundary DB 125. F1G.
20 is a schematic diagram illustrating a specific example of
partitioning. As illustrated in FIG. 20, the updating unit 20
stores “time 2, which specifies the data on “Bob”, in the top
information in the bucket (D,), which is a top bucket, and
updates the number of data in the bucket (D,) to two.

At this time, the bucket determining unit 19 refers to each
partition boundary stored in the partition boundary DB 125;
specifies that the number of data in the bucket (D)) is greater
than that in the other buckets by two and specifies that the
bucket (D,) is a large bucket; and notifies the updating unit 20
of'these facts. Because the insertion point of the new data is in
the top of the received data DB 12a and the bucket (D,) is a
large bucket, the updating unit 20 performs “process 6.

As illustrated in FIG. 20, the updating unit 20 specifies that
the small bucket closest to the bucket (D)) is the bucket (D).
In other words, g=2. Then, the shrinking execution unit 205
performs the upshrink (1); modifies the top information and
the end information in the bucket (D,) stored in the partition
boundary DB 125 to “time 2”, which specifies data on “Bob”;
and decrements the number of data by one to make the num-
ber of data one. In the partition boundary DB 1254, the expan-
sion execution unit 20a replaces the top information in the
bucket (D,), i.e., a NULL corresponding to the last virtual
data, with “time 1 in “Alice”; and increments the number of
data by one. Under the assumption about the bucket with size
1, the end information in the bucket (D,) is also replaced with
“time 1”. Because 2>q-1 at this time, the updating unit 20
does not perform the upslide (2, q-1).

Subsequently, it is assumed that the receiving unit 16
receives the stream data containing “3, Caren, 62, 200, 3000”.
The position specifying unit 17 compares the annual income
of each stored data with the received annual income “200” of
“Caren” and specifies the storing position of the data on
“Caren” is in the end of the received data DB 12a. Then, the
storing control unit 18 stores the data on “Caren” in the end of
the received data DB 12a. Thereafter, the updating unit 20
updates the partition boundary DB 125. FIG. 21 is a sche-
matic diagram illustrating a specific example of partitioning.
As illustrated in FIG. 21, the bucket determining unit 19
specifies that the storing position of data on “Caren” is in the
end and specifies that the end bucket used to store the subject
data is a small bucket. Accordingly, the updating unit 20
performs “process 8. Specifically, in the partition boundary
DB 125, the updating unit 20 stores “time 3” that specifies the
data on “Caren” in the end information in the end bucket (D;)
and increments the number of data by one. Under the assump-
tion about the bucket with size 1, “time 3” is also stored in the
top information in the bucket (D).

Subsequently, it is assumed that the receiving unit 16
receives the stream data containing “4, Dick, 53, 1000, 5500”.
The position specifying unit 17 compares the annual income
of each of the stored data with the received annual income
“1000” of “Dick” and specifies the storing position of the data
on “Dick” is the top of the received data DB 124. Then, the
storing control unit 18 stores the data on “Dick” in the top of

US 9,235,578 B2

17

the received data DB 12a. Thereafter, the updating unit 20
updates the partition boundary DB 125. FIG. 22 is a sche-
matic diagram illustrating a specific partition example. As
illustrated in FIG. 22, the bucket determining unit 19 deter-
mines that the storing position of the data on “Dick” is the top
and the top bucket to be stored is a small bucket. Accordingly,
the updating unit 20 performs “process 7. Specifically, in the
partition boundary DB 125, the updating unit 20 stores “time
4”, which specifies the data on “Dick”, in the top information
in the top bucket (D)) and increments the number of data by
one, thereby the number of data becomes “2”.

If the receiving unit 16 receives the stream data containing
“5, Erik, 35, 800, 100007, the position specifying unit 17
compares the annual income of each of the stored data with
the received annual income “800” of “Erik™ and specifies that
the storing position of the data on “Erik™ is between “Dick”
and “Bob”. Then, the storing control unit 18 stores the data on
“Erik” between “Dick” and “Bob” in the received data DB
12a. Thereafter, the updating unit 20 updates the partition
boundary DB 124. FIG. 23 is a schematic diagram illustrating
aspecific partition example. As illustrated in FIG. 23, because
the data is added to the bucket (D)) that is the top bucket, the
updating unit 20 updates the number of data in the bucket (D))
to “3”.

At this time, the bucket determining unit 19 refers to each
partition boundary in the partition boundary DB 125; speci-
fies that the number of data in the bucket (D,) is equal to or
greater than two, which is unlike the number of data in the
other buckets, and specifies the bucket (D)) is a large bucket;
and notifies the updating unit 20 of the facts. Because the new
data is stored in the bucket (D,) and the bucket (D,) is a large
bucket, the updating unit 20 performs “process 2”.

Specifically, as illustrated in FIG. 23, the updating unit 20
specifies that the small bucket closest to the bucket (D,) is the
bucket (D). In other words, q=2, thereby p<q. Accordingly,
the shrinking execution unit 206 performs the upshrink (1);
modifies the end information in the bucket (D,) stored in the
partition boundary DB 125 to “time 5” that specifies the data
on “Dick”; and decrements the number of data by one,
thereby making the number of data “1”. Furthermore, the
expansion execution unit 20a performs the upexpand (2);
replaces the top information in the bucket (D,) stored in the
partition boundary DB 125 with the “time 2” in “Bob”, which
is immediately above; and increments the number of data by
one to make the number of data “2”. Because p+1>q-1 at this
time, the updating unit 20 does not perform the upslide (p+1,
q-1).

Furthermore, if the receiving unit 16 receives the stream
data containing “6, Frank, 19, 250, 3007, the position speci-
fying unit 17 compares the annual income of each of the
stored data with the received annual income “250” of “Erik”
and specifies the storing position of the data on “Frank” is
between “Alice” and “Caren”. Then, the storing control unit
18 stores the data on “Frank™ between “Alice” and “Caren” in
the received data DB 12a.

Then, by referring to the received data DB 12a or the
partition boundary DB 125, the bucket determining unit 19
specifies that the storing position of the data on “Frank” is
between the bucket (D,) and the bucket (D,) and specifies that
the bucket (D) is a large bucket and the bucket (D) is a small
bucket. After receiving this specified result, the updating unit
20 performs “process 5”. FIG. 24 is a schematic diagram
illustrating a specific example of partitioning. As illustrated in
FIG. 24, the updating unit 20 modifies the top information in
the bucket (D) stored in the partition boundary DB 125 to

10

15

20

25

30

35

40

45

50

55

60

65

18

“time 6", which specifies the data on “Frank”, and increments
the number of data by one, thereby updating the number of
data to “2”.

Furthermore, if the receiving unit 16 receives the stream
data containing “7, George, 25, 600, 13007, the position
specifying unit 17 compares the annual income of the each of
the stored data with the annual income “600” of “George” and
specifies that the storing position of the data on “George” is
between “Erik” and “Bob”. Then, the storing control unit 18
stores the data on “George” between the “Erik” and “Bob” in
the received data DB 12a.

At this time, by referring to the received data DB 124 or the
partition boundary DB 125, the bucket determining unit 19
determines that the storing position of the data on “George” is
between the bucket (D,) and the bucket (D,) and determines
that both the bucket (D,) and the bucket (D,) are small buck-
ets. After receiving the result of the determination, the updat-
ing unit 20 performs “process 3”. FIG. 25 is a schematic
diagram illustrating a specific example of partitioning. As
illustrated in FIG. 25, the updating unit 20 replaces the end
information in the bucket (D,) stored in the partition bound-
ary DB 126 with “time 77, which specifies the data on
“George”, and increments the number of data by one, thereby
updating the number of data to “3”.

Furthermore, if the receiving unit 16 receives the stream
data containing “8, Henry, 47, 750, 85007, the position speci-
fying unit 17 compares the annual income of each of the
stored data with the received annual income “750” of
“Henry” and specifies that the storing position of the data on
“Henry” is between “Erik” and “George”. Then, the storing
controlunit 18 stores the data on “Henry” between “Erik™ and
“George” in the received data DB 12a. Thereafter, the updat-
ing unit 20 updates the partition boundary DB 125. F1G. 26 is
a schematic diagram illustrating a specific example of parti-
tioning. As illustrated in FIG. 26, because the data is added to
the bucket (D,) corresponding to the top bucket, the updating
unit 20 updates the number of data in the bucket (D)) to four.

At this time, by referring to each of the partition boundaries
in the partition boundary DB 125, the bucket determining unit
19 specifies, unlike the number of data in other buckets, that
the number of data in the bucket (D,) is equal to or greater
than two; specifies that the bucket (D,) is a large bucket; and
notifies the updating unit 20 of'the facts. Because the new data
is stored in the bucket (D,) and the bucket (D)) is a large
bucket, the updating unit 20 performs “process 2”.

Specifically, as illustrated in FIG. 26, the updating unit 20
specifies that the small bucket closest to the bucket (D)) is the
bucket (D,). In other words, =2 and p<q. Accordingly, the
shrinking execution unit 206 performs the upshrink (1);
modifies the end information in the bucket (D)) stored in the
partition boundary DB 125 from “time 7” to “time 8, which
specifies the data on “Henry”’; decrements the number of data
by one; and updates the number of data to “3”. Furthermore,
the expansion execution unit 20a performs the upexpand (2);
modifies the top information in the bucket (D,) stored in the
partition boundary DB 126 from “time 2” to “time 7” in
“George” located immediately above; increments the number
of data by one; and updates the number of data to “3”. At this
time, because p+1>q-1, the updating unit 20 does not per-
form the upslide (p+1, g-1).

Furthermore, if the receiving unit 16 receives the stream
data containing “9, Iris, 61, 1200, 70007, the position speci-
fying unit 17 compares the annual income of each of the
stored data with the annual income “1200” of “Iris” and
specifies that the storing position of the data on “Iris” is the
top ofthe received data DB 12a. Then, the storing control unit
18 stores the data on “Iris” in the top of the received data DB

US 9,235,578 B2

19

12a. Thereafter, the updating unit 20 updates the partition
boundary DB 124. FIG. 27 is a schematic diagram illustrating
a specific example of partitioning. As illustrated in FIG. 27,
the updating unit 20 stores the “time 9, which specifies the
data on “Iris”, in the top information in the bucket (D,), which
is the top bucket, and updates the number of data in the bucket
(D,) to four.

Atthis time, by referring to each of the partition boundaries
in the partition boundary DB 125, the bucket determining unit
19 specifies that, unlike the number of data in the other
buckets, the number of data in the bucket (D)) is equal to or
greater than two; specifies that the bucket (D)) is a large
bucket; and notifies the updating unit 20 of the facts. Because
the insertion point of new data is the top of the received data
DB 124 and the top bucket (D,) is a large bucket, the updating
unit 20 performs “process 6”.

Specifically, as illustrated in FIG. 27, the updating unit
specifies that the small bucket closest to the bucket (D,) is the
bucket (D,). In other words, q=2. Then, the shrinking execu-
tion unit 205 performs the upshrink (1); modifies the end
information in the bucket (D,) stored in the partition bound-
ary DB 125 from “time 8” to “time 5”, which is immediately
above; decrements the number of data by one; and updates the
number of data to “3”. Furthermore, the slide execution unit
20c¢ performs the upslide (2, 2); modifies the top information
in the bucket (D,) from “time 7" to “time 8, which is imme-
diately above; and modifies the end information in the bucket
(D,) from “time 1” to “time 2”, which is immediately above.
Furthermore, the expansion execution unit 20a performs the
upexpand (3); modifies the top information in the bucket (D)
stored in the partition boundary DB 125 from “time 6 to
“time 17, which is immediately above; increments the num-
ber of data by one; and updates the number of data to “3”.

By performing the processes illustrated in FIGS. 19 to 27,
the data partitioning apparatus 10 can obtain the partition
results illustrated in FIG. 28. FIG. 28 is a schematic diagram
illustrating the processing results obtained from a specific
example of partitioning. As illustrated in FIG. 28, the data
partitioning apparatus 10 can sequentially receive data con-
taining time 1 to time 9, accumulate the data by sorting them
every time the data partitioning apparatus 10 receives the
data, and furthermore, perform the equal partitioning on the
received data. FIG. 28 illustrates the state in which, as an
example, the data partitioning apparatus 10 partitions the data
such that data ontime 9, time 4, and time 5 are contained in the
bucket (D)), data on time 8, time 7, and time 2 are contained
in the bucket (D,), and data on time 1, time 6, and time 3 are
contained in the bucket (D;).

Specific Example of the Output

In the following, a specific example of outputting data will
be described with reference to FIGS. 29 to 32. FIG. 29 is a
schematic diagram illustrating the results of partitioning data
performed by the data partitioning apparatus. As illustrated in
FIG. 29, it is assumed that the data partitioning apparatus 10
equally partitions data from time 1 to time 10 into five buck-
ets. Specifically, it is assumed that the data partitioning appa-
ratus 10 performs the equal partitioning on the data such that
the data on time 9 and time 4 are contained in the bucket (D,),
the data on time 5 and time 8 are contained in the bucket (D,),
the data on time 7 and time 2 are contained in the bucket (D),
the data on time 10 and time 1 are contained in the bucket
(D,), and the data on time 6 and time 3 are contained in the
bucket (D).

In this state, it is assumed that the output unit 21 in the data
partitioning apparatus 10 receives, from the user terminal 5, a
request for outputting the data in the bucket (D,), the bucket
(D5), and the bucket (D,). FIGS. 30 to 32 are schematic

5

10

15

20

25

30

40

45

50

55

60

65

20

diagrams illustrating a specific example of outputting data. In
such a case, as illustrated in FIG. 30, first, the output unit 21
refers to the top and the end information in the bucket (D,)
stored in the partition boundary DB 124. Then, from among
the data sorted and stored in the received data DB 12a, the
output unit 21 specifies that two data located between “time
5 and “time 8” is the data belonging to the bucket (D,). Then,
the output unit 21 reads, from the received data DB 12a, data
on 53, Erik, 35, 800, and 10000, which is the record on “time
5” and data on “8, Henry, 47, 750, and 85007, which is the
record on “time 8”, and transmits them to the user terminal 5.

Then, as illustrated in FIG. 31, the output unit 21 refers the
top and the end information in the bucket (D;) stored in the
partition boundary DB 125. Then, from among the data sorted
and stored in the received data DB 12a, the output unit 21
specifies that the two data located between “time 7” and “time
2” is data belonging to the bucket (D;). Then, the output unit
21 reads, from the received data DB 124, data on 7, George,
25, 600, and 13007, which is the record on “time 77, and data
on “2, Bob, 55, 450, and 25007, which is the record on “time
2”, and transmits them to the user terminal 5.

As illustrated in FIG. 32, lastly, the output unit 21 refers the
top and the end information in the bucket (D,) stored in the
partition boundary DB 125. Then, from among the data sorted
and stored in the received data DB 12a, the output unit 21
specifies the two data located “time 10” and “time 1” is the
data belonging to the bucket (D,). Then, the output unit 21
reads, from the received data DB 12a, data on “10, James, 37,
400, and 17007, which is the record on “time 10” and data on
“1, Alice, 24, 300, and 15007, which is the record on “time 17,
and transmits them to the user terminal 5.

As described above, the data partitioning apparatus 10 can
read, from among data partitioning results, the data in a group
specified by a user and make a response.

Advantage of the Embodiment

As described above, the data partitioning apparatus 10
according to the first embodiment can implement equal par-
titioning that dynamically changes a partition boundary for
each single record while keeping the number of buckets.
Specifically, the data partitioning apparatus 10 can sort and
store data every time the data partitioning apparatus 10
receives stream data and can partition data. At this time, the
data partitioning apparatus 10 can group data without allo-
cating a sequence number, which indicates the sequence of
the sorted data, to the data, thus reducing the time taken to
partition data. In other words, it is possible to partition, at high
speed, data to which a “serial number”, such as “time” men-
tioned in the embodiment, that is used to identify a record is
allocated but to which a “sequence number” is not allocated,
without allocating the “sequence number”.

Because the data partitioning apparatus 10 can partition
data when it receives the data, it does not take time after a user
requests the data partitioning until the partitioning is per-
formed; therefore, a real time response can be achieved. In
contrast, with the conventional technology, if only a part of
buckets that are equally partitioned is requested to be output,
all of the data need to be scanned, which takes time. However,
with the data partitioning apparatus 10 according to the first
embodiment, only the data in a bucket requested from a user
needs to be scanned, which makes it possible to reduce the
output time.

[b] Second Embodiment

In the above explanation, a description has been given of
the embodiment according to the present invention; however,
the embodiment is not limited thereto and can be imple-

US 9,235,578 B2

21

mented with various kinds of embodiments other than the
embodiment described above. Therefore, another embodi-
ment will be described below.

Partitioning and Output

In the firstembodiment, the data portioning and data output
are described using a single flowchart; however, the configu-
ration is not limited thereto. For example, the data partition-
ing and the data output may also be independently performed.
Specifically, instead of performing the data output processing
after performing the data partitioning process, these pro-
cesses can be independently performed. Furthermore, in
addition to outputting data to the user terminal 5, the data
partitioning apparatus 10 can also display the data on a dis-
play unit, such as a display, and write the data on a storage
medium or the like.

Stream Data

The stream data or the configuration of the data described
in the first embodiment are only an example and are not
limited thereto. Furthermore, the data partitioning apparatus
10 may not be limited for the stream data but be used for
various kinds of data. For example, the data partitioning appa-
ratus 10 can similarly partition data that is stored in storage or
the like or data that is read from a storage medium or the like.

System

Of the processes described in the embodiment, the whole
or a part of the processes that are mentioned as being auto-
matically performed can also be manually performed, or the
whole or a part of the processes that are mentioned as being
manually performed can also be automatically performed
using known methods. Furthermore, the flow of the pro-
cesses, the control procedures, the specific names, and the
information containing various kinds of data or parameters
indicated in the above specification and drawings can be
arbitrarily changed unless otherwise stated.

The components of each unit illustrated in the drawings are
only for conceptually illustrating the functions thereof and
are not always physically configured as illustrated in the
drawings. In other words, the specific shape of a separate or
integrated device is not limited to the drawings. Specifically,
all or part of the device can be configured by functionally or
physically separating or integrating any of the units depend-
ing on various loads or use conditions. Furthermore, all or any
part of the processing functions performed by each device can
be implemented by a CPU and by programs analyzed and
executed by the CPU or implemented as hardware by wired
logic.

Hardware Configuration

The various processes described in the above embodiments
can be implemented by programs prepared in advance and
executed by a computer such as a personal computer or a
workstation. Accordingly, in the following, an example of a
computer system that executes a program having the same
function performed by the apparatus in the above embodi-
ments will be described.

FIG. 33 is a block diagram illustrating the hardware con-
figuration of a computer that executes a data partitioning
program. As illustrated in FIG. 33, a computer 100 includes a
CPU 102, an input device 103, an output apparatus 104, a
communication interface 105, a media reader 106, a hard disk
drive (HDD) 107, and a random access memory (RAM) 108.
Furthermore, each units illustrated in FIG. 33 are connected
each other via a bus 101.

The input device 103 is a mouse or a keyboard; the output
apparatus 104 is, for example, a display; and the communi-
cation interface 105 is an interface, such as a network inter-
face card (NIC). The HDD 107 stores therein, together with a
data partitioning program 1074, the DBs or the like illustrated

10

15

20

25

30

35

40

45

50

55

60

65

22

in FIG. 2. The HDD 107 is mentioned as an example of a
recording medium; however, the present invention is not lim-
ited thereto. For example, various programs may also be
stored in another computer readable recording medium, such
as aread only memory (ROM),aRAM, a CD-ROM, orasolid
state drive (SSD) and may also be read by a computer. Fur-
thermore, a program may also be obtained and used by
arranging a storage medium at a remote site and by a com-
puter accessing the storage medium. Furthermore, at this
time, the obtained program may also be stored in the record-
ing medium in the computer.

The CPU 102 reads the data partitioning program 107a and
loads it in the RAM 108, and thus the data partitioning pro-
gram 107a functions as a data partitioning process 108a that
executes each function described above with reference to
FIG. 2. Specifically, the data partitioning process 108a
executes the same functions as those performed by the num-
ber-of-partitions setting unit 14, the partition processing unit
15, and the output unit 21 illustrated in FIG. 2. In this way, by
reading and executing the program, the computer 100 oper-
ates as an information processing apparatus that executes the
data partitioning method.

For example, the computer 100 reads the data partitioning
program from the recording medium by the media reader 106
and executes the read data partitioning program, thereby
implementing the same function described in the embodi-
ments. The program mentioned in the embodiment is not
limited to the program executed by the computer 100. For
example, the present invention can also be used in a case in
which another computer or a server executes the program or
in which another computer and a server cooperatively execute
the program with each other.

With the data partitioning apparatus, the data partitioning
method, and the data partitioning program according to an
aspect of the present invention, it is possible to reduce the
time taken to group data, without allocating a sequence num-
ber.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in under-
standing the invention and the concepts contributed by the
inventor to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and
conditions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although the embodiments of the
present invention have been described in detail, it should be
understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.

What is claimed is:
1. A data partitioning apparatus comprising:
a memory including:

a data storing unit that stores therein data associated with
previous-and-subsequent information that specifies
previous and subsequent data, the stored data is sorted
by a specific item; and

an information storing unit that stores therein, for
groups, each of which contains the data that are stored
in the data storing unit and that are partitioned into a
previously determined number of the groups, top
information that specifies data located at the top in a
corresponding group and end information that speci-
fies data located at the end in the corresponding
group; and

a processor coupled to the memory, wherein the processor
executes a process comprising:

US 9,235,578 B2

23

specifying a specific point in accordance with the specific

item contained in a new data;

when the new data is stored in the data storing unit, insert-

ing the new data into the specific point of the data storing
unit;
when the new data is stored in the data storing unit, updat-
ing the top information and the end information for the
groups stored in the information storing unit such that
the number of data belonging to each of the groups is
equal to or less than one; and
when the difference between the number of data belonging
to a group in which the new data is stored at the inserting
and the number of data belonging to other groups
exceeds one, the updating updates the top information or
the end information in the group in which the new data is
stored such that the number of data located between the
top information and the end information in the group in
which the new data is stored is decremented by one,

wherein, for the other groups in which the difference with
respect to the number of data belonging to the group
where the new data is stored at the inserting exceeds one,
the updating updates the top information or the end
information such that the number of data located
between the top information and the end information in
the other groups is incremented by one.
2. The data partitioning apparatus according to claim 1,
wherein, for each of the groups located between the group in
which the new data is stored at the inserting and the other
groups in which the difference with respect to the number of
data belonging to the group where the new data is stored at the
inserting exceeds one, the updating updates, without chang-
ing the number of data located between the top information
and the end information, the top information and the end
information in each of the groups to information that specifies
data shifted by one in the direction of the group in which the
new data is stored.
3. The data partitioning apparatus according to claim 1, the
processor further executes a process comprising:
first reading, from the information storing unit and from
among the groups each of which includes the data that
are partitioned and that are stored in the data storing unit,
the top information and the end information in a group
that is specified by a user;
second reading, from the data storing unit, data between
data corresponding to the read top information and data
corresponding to the read end information; and

outputting the data read at the first reading and the second
reading to a predetermined apparatus.

4. A data partitioning method executed by a computer,
wherein the computer includes

a data storing unit that stores therein data associated with

previous-and-subsequent information that specifies pre-
vious and subsequent data, the stored data is sorted by a
specific item, and

an information storing unit that stores therein, for groups,

each of which contains the data that are stored in the data
storing unit and that are partitioned into a previously
determined number of the groups, top information that
specifies data located at the top in a corresponding group
and end information that specifies data located at the end
in the corresponding group, wherein the data partition-
ing method comprising:

specifying a specific point in accordance with the specific

item contained in a new data;

5

15

20

30

35

40

45

50

55

60

24

when the new data is stored in the data storing unit, insert-
ing the new data into the specific point of the data storing
unit;
when the new data is stored in the data storing unit, updat-
ing the top information and the end information for the
groups stored in the information storing unit such that
the number of data belonging to each of the groups is
equal to or less than one; and
when the difference between the number of data belonging
to a group in which the new data is stored at the inserting
and the number of data belonging to other groups
exceeds one, the updating updates the top information or
the end information in the group in which the new data is
stored such that the number of data located between the
top information and the end information in the group in
which the new data is stored is decremented by one,

wherein, for the other groups in which the difference with
respect to the number of data belonging to the group
where the new data is stored at the inserting exceeds one,
the updating updates the top information or the end
information such that the number of data located
between the top information and the end information in
the other groups is incremented by one.

5. A computer readable storage medium having stored a
data storing unit that stores therein data associated with pre-
vious-and-subsequent information that specifies previous and
subsequent data, the stored data is sorted by a specific item,

an information storing unit that stores therein, for groups,

each of which contains the data that are stored in the data
storing unit and that are partitioned into a previously
determined number of the groups, top information that
specifies data located at the top in a corresponding group
and end information that specifies data located at the end
in the corresponding group, and

a data partitioning program causing a computer to execute

a process comprising:

specifying a specific point in accordance with the specific

item contained in a new data;

when the new data is stored in the data storing unit, insert-

ing the new data into the specific point of the data storing
unit;
when the new data is stored in the data storing unit, updat-
ing the top information and the end information for the
groups stored in the information storing unit such that
the number of data belonging to each of the groups is
equal to or less than one; and
when the difference between the number of data belonging
to a group in which the new data is stored at the inserting
and the number of data belonging to other groups
exceeds one, the updating updates the top information or
the end information in the group in which the new data is
stored such that the number of data located between the
top information and the end information in the group in
which the new data is stored is decremented by one,

wherein, for the other groups in which the difference with
respect to the number of data belonging to the group
where the new data is stored at the inserting exceeds one,
the updating updates the to information or the end infor-
mation such that the number of data located between the
top information and the end information in the other
groups is incremented by one.

#* #* #* #* #*

